Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharmacol Res ; 202: 107112, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38403256

RESUMO

Depression is a common disease that affects physical and mental health and imposes a considerable burden on afflicted individuals and their families worldwide. Depression is associated with a high rate of disability and suicide. It causes a severe decline in productivity and quality of life. Unfortunately, the pathophysiological mechanisms underlying depression have not been fully elucidated, and the risk of its treatment is still presented. Studies have shown that the expression of autophagic markers in the brain and peripheral inflammatory mediators are dysregulated in depression. Autophagy-related genes regulate the level of autophagy and change the inflammatory response in depression. Depression is related to several aspects of immunity. The regulation of the immune system and inflammation by autophagy may lead to the development or deterioration of mental disorders. This review highlights the role of autophagy and neuroinflammation in the pathophysiology of depression, sumaries the autophagy-targeting small moleculars, and discusses a novel therapeutic strategy based on anti-inflammatory mechanisms that target autophagy to treat the disease.


Assuntos
Doenças Neuroinflamatórias , Qualidade de Vida , Humanos , Autofagia , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico
2.
Microbiome ; 12(1): 34, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378622

RESUMO

BACKGROUND: Remodeling eubiosis of the gut microenvironment may contribute to preventing the occurrence and development of depression. Mounting experimental evidence has shown that complement C3 signaling is associated with the pathogenesis of depression, and disruption of the gut microbiota may be an underlying cause of complement system activation. However, the mechanism by which complement C3 participates in gut-brain crosstalk in the pathogenesis of depression remains unknown. RESULTS: In the present study, we found that chronic unpredictable mild stress (CUMS)-induced mice exhibited obvious depression-like behavior as well as cognitive impairment, which was associated with significant gut dysbiosis, especially enrichment of Proteobacteria and elevation of microbiota-derived lipopolysaccharides (LPS). In addition, peripheral and central complement C3 activation and central C3/CR3-mediated aberrant synaptic pruning in microglia have also been observed. Transplantation of gut microbiota from CUMS-induced depression model mice into specific pathogen-free and germ-free mice induced depression-like behavior and concomitant cognitive impairment in the recipient mice, accompanied by increased activation of the complement C3/CR3 pathway in the prefrontal cortex and abnormalities in microglia-mediated synaptic pruning. Conversely, antidepressants and fecal microbiota transplantation from antidepressant-treated donors improved depression-like behaviors and restored gut microbiome disturbances in depressed mice. Concurrently, inhibition of the complement C3/CR3 pathway, amelioration of abnormal microglia-mediated synaptic pruning, and increased expression of the synapsin and postsynaptic density protein 95 were observed. Collectively, our results revealed that gut dysbiosis induces the development of depression-like behaviors through abnormal synapse pruning in microglia-mediated by complement C3, and the inhibition of abnormal synaptic pruning is the key to targeting microbes to treat depression. CONCLUSIONS: Our findings provide novel insights into the involvement of complement C3/CR3 signaling and aberrant synaptic pruning of chemotactic microglia in gut-brain crosstalk in the pathogenesis of depression. Video Abstract.


Assuntos
Depressão , Microglia , Animais , Camundongos , Complemento C3 , Depressão/microbiologia , Disbiose , Microglia/fisiologia , Sinapses/fisiologia
3.
Front Immunol ; 14: 1193053, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37881439

RESUMO

Adult hippocampal neurogenesis generates functional neurons from neural progenitor cells in the hippocampal dentate gyrus (DG) to complement and repair neurons and neural circuits, thus benefiting the treatment of depression. Increasing evidence has shown that aberrant microglial activity can disrupt the appropriate formation and development of functional properties of neurogenesis, which will play a crucial role in the occurrence and development of depression. However, the mechanisms of the crosstalk between microglia and adult hippocampal neurogenesis in depression are not yet fully understood. Therefore, in this review, we first introduce recent discoveries regarding the roles of microglia and adult hippocampal neurogenesis in the etiology of depression. Then, we systematically discuss the possible mechanisms of how microglia regulate adult hippocampal neurogenesis in depression according to recent studies, which involve toll-like receptors, microglial polarization, fractalkine-C-X3-C motif chemokine receptor 1, hypothalamic-pituitary-adrenal axis, cytokines, brain-derived neurotrophic factor, and the microbiota-gut-brain axis, etc. In addition, we summarize the promising drugs that could improve the adult hippocampal neurogenesis by regulating the microglia. These findings will help us understand the complicated pathological mechanisms of depression and shed light on the development of new treatment strategies for this disease.


Assuntos
Depressão , Microglia , Depressão/tratamento farmacológico , Microglia/patologia , Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal , Hipocampo/fisiologia , Neurogênese/fisiologia
4.
Phytomedicine ; 120: 155039, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37672855

RESUMO

BACKGROUND: Inflammatory bowel disease (IBD) is a significant global health concern that can lead to depression in affected patients. Liquiritin apioside (LA) possesses anti-oxidative and anti-inflammatory properties. However, its anti-inflammatory mechanism in IBD has not been extensively studied. PURPOSE: This study elucidates the pivotal role of LA in alleviating inflammation by regulating gut metabiota-derived metabolites and evaluating its regulative effects on promoting a balance of Th17/Treg cells in colitis mice. METHODS: To evaluate the effect of LA on IBD,16S rRNA gene sequencing and UPLC-QTOF-MS analysis were used to identify the changes of intestinal bacteria and their metabolites. Cytokines levels were determined by ELISA and qPCR, while immune cell ratios were evaluated via flow cytometry. RESULTS: Our findings revealed that LA treatment ameliorated general states of DSS-induced colitis mice and their accompanying depressive behaviors. Moreover, LA restricted the expression of pro-inflammatory cytokines and revised the imbalanced Treg/Th17 differentiation, while promoting SCFAs production in inflamed colon tissues. Fecal microbiota transplantation from LA-fed mice also corrected the imbalanced Treg/Th17 differentiation, indicating that LA-mediated restoration of the colonic Treg/Th17 balance mainly depends on the changes in gut metabolites. CONCLUSION: These results provide scientific evidence explaining the apparent paradox of low bioavailability and high bioactivity in polyphenols, and suggesting that LA could be used as a potential dietary supplement for the prevention and improvement of IBD.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Humanos , Animais , Camundongos , Depressão/tratamento farmacológico , RNA Ribossômico 16S , Linfócitos T Reguladores , Colite/tratamento farmacológico , Inflamação , Citocinas
5.
Phytomedicine ; 108: 154512, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36288652

RESUMO

BACKGROUND: Feruloylated oligosaccharides (FOs) are natural esterification products of ferulic acid and oligosaccharides. STUDY DESIGN: In this study, we examined whether FOs contribute to the ensured survival of nigrostriatal dopamine neurons and inhibition of neuroinflammation in Parkinson's disease (PD). METHODS: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 30 mg/kg) was injected intraperitoneally into mice to establish a Parkinson's disease (PD) mouse model. FOs (15 and 30 mg/kg) were orally administered daily to the MPTP-treated mice. The rotarod test, balance beam test, immunofluorescence, enzyme-linked immunosorbent assay (ELISA), quantitative PCR (qPCR), and western blot analyses were performed to examine the neuroprotective effects of FOs on MPTP-treated mice. RESULTS: Our study indicated that FOs increased the survival of dopamine neurons in the substantia nigra pars compacta (SNc) of the MPTP-treated mice. The neuroprotective effects of FOs were accompanied by inhibited glial activation and reduced inflammatory cytokine production. The mechanistic experiments revealed that the neuroprotective effects of FOs might be mediated through the activation of the ERK/CREB/BDNF/TrkB signalling pathway. CONCLUSION: This study provides new insights into the mechanism underlying the anti-neuroinflammatory effect of phytochemicals and may facilitate the development of dietary supplements for PD patients. Our results indicate that FOs can be used as potential modulators for the prevention and treatment of PD.


Assuntos
Intoxicação por MPTP , Fármacos Neuroprotetores , Doença de Parkinson , Camundongos , Animais , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/metabolismo , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/uso terapêutico , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Camundongos Endogâmicos C57BL , Intoxicação por MPTP/tratamento farmacológico , Intoxicação por MPTP/metabolismo , Intoxicação por MPTP/prevenção & controle , Neurônios Dopaminérgicos , Modelos Animais de Doenças , Oligossacarídeos/farmacologia
6.
Food Res Int ; 162(Pt A): 111887, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36461269

RESUMO

Incidence of anxiety and depression has been surging in recent years, causing unignorable mental health crisis across the globe. Mounting studies demonstrated that overgrowth of detrimental gut microbes is driving the development of anxiety and depression. Our previous studies suggested that ferulic acid (FA) and feruloylated oligosaccharides (FOs) were potent in regulating gut microbiome and microbial metabolism in a variety of disease settings, including neuroinflammation. Given the increasing evidence solidifying the role of gut-brain axis in neurological disorders, we here investigated the therapeutic potential of FA and FOs in anxiety and depression. In present study we found that FA and FOs effectively alleviated anxiety and depression-like behavior in mice, while increasing the abundance of Firmicutes, Solibacillus, Acinetobacter and Arthrobacter, and decreasing the abundance of Parabacteroides, Oscollospira and Rummeliibacillus. In addition, FA and FOs were efficacious in enhancing phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine and caffeine metabolism in mice having depression. Our results validated FA and FOs as effective nutrition to prevent anxiety and depression, as well as provided mechanistic insight into their anti-anxiety and anti-depression function. We suggested that FOs mitigated the symptom of depression in mice potentially via changing gut microbiome structure and microbial metabolism.


Assuntos
Microbioma Gastrointestinal , Camundongos , Animais , Ansiedade , Oligossacarídeos/farmacologia , Oligossacarídeos/uso terapêutico , Fenilalanina
7.
Crit Rev Food Sci Nutr ; : 1-17, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35838146

RESUMO

Supplementing with edible herbal medicine is an important strategy because of its role in nutrition. Many polyphenols, which are universal components in edible herbal medicines, have low bioavailability. Therefore, gut microbiota is a key determinant of polyphenol bioactivity. Polyphenols can alter the abundance of flora associated with neuroinflammation by reversing intestinal microbiota dysbiosis. Intestinal flora-mediated chemical modification of polyphenols can result in their conversion into active secondary metabolites. The current review summarizes the main edible medicines used in anti-depression and details the interactions between polyphenols and gut microbiota; in addition, it provides insights into the mechanisms underlying the possible suppression of neuroinflammation associated with depression, by polyphenols in edible herbal medicine. A better understanding of polyphenols with bioactivities that are crucial in edible herbal medicine may facilitate their use in the prevention and treatment of neuroinflammation associated with depression.

8.
Phytomedicine ; 103: 154239, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35716541

RESUMO

BACKGROUND: Depression is a prevalent emotion disorder which is thought to be due to neuronal structural alterations and/or functional impairment within specific brain regions. Several studies have shown that microRNAs are involved in the pathogenesis of depression. As a Chinese herbal formula, Xiaoyaosan (XYS) could have antidepressive effects, although the mechanisms associated with microRNAs are poorly understood. PURPOSE: In this study, we investigated whether inhibition of the miR-200a/b-3p/NR3C1 pathway in the prefrontal cortex is involved in the anti-neuronal apoptosis and anti-stress effects of XYS and then further delineated the underlying mechanism. METHODS: To evaluate the efficacy of XYS in relieving stress behaviors and altering the expression of miRNAs involved in the regulation of these behaviors in vivo, a chronic unpredictable mild stress (CUMS) rodent model and RNA-seq were performed. Primary cortical neurons were used to evaluate the molecular function of miR-200a/b-3p and detect the in vitro neuroprotective function of paeoniflorin, which is one of the main components of XYS. To investigate the function of miR-200a/b-3p in stress behaviors, stereotactic microinjection of AAV2/9-Syn-miR-200a/b-3p was performed to deliver the treatment to the rat mPFC. RESULTS: XYS reduced the anxiety and depression-like behaviors associated with chronic stress and reduced the expression of miR-200a/b-3p and neuronal apoptosis in the prefrontal cortex (PFC). The overexpression of miR-200a/b-3p in primary cortical neurons reduced the expression of the target gene NR3C1, increased the protein expression of cleaved caspase-3 and Bax, and decreased the anti-apoptotic protein Bcl-2. One of the active ingredients of XYS, paeoniflorin, can inhibit miR-200a/b-3p-mediated apoptosis of primary neurons and abnormal expression of apoptosis-related proteins. After overexpressing miR-200a/b-3p in vivo (vmPFC), the rats eventually showed significant anxiety-like behaviors similar to those caused by chronic stress. CONCLUSION: Our findings indicate that XYS can inhibit the CUMS-induced expression of miR-200a/b-3p, regulate miR-200a/b-3p/NR3C1 signaling in the PFC caused by chronic stress, and reduce neuronal apoptosis and stress-related behaviors.


Assuntos
Medicamentos de Ervas Chinesas , MicroRNAs , Animais , Apoptose , Medicamentos de Ervas Chinesas/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo , Córtex Pré-Frontal/metabolismo , Ratos , Receptores de Glucocorticoides/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-35077841

RESUMO

Depression is the second most common psychiatric disorder, affecting more than 340 million people of all ages worldwide. However, the mechanisms underlying the development of depression remain unclear, and existing antidepressants may cause clinical dependence and toxic side effects. Recently, emerging evidence from the fields of neuroscience, genetics, and genomics supports the modulatory role of long non-coding RNA (lncRNA) in depression. LncRNAs may mediate the pathogenesis of depression through multiple pathways, including regulating neurotransmitters and neurotrophic factors, affecting synaptic conduction, and regulating the ventriculo-olfactory neurogenic system. In addition, relying on genome-wide association study and molecular biological experiment, the possibility of lncRNA as a potential biomarker for the differential diagnosis of depression and other mental illnesses, including schizophrenia and anxiety disorders, is gradually being revealed. Thus, it is important to explore whether lncRNAs are potential therapeutic targets and diagnostic biomarkers for depression. Here, we summarize the genesis and function of lncRNAs and discuss the aberrant expression and functional roles of lncRNAs in the development, diagnosis, and therapy of depression, as well as the deficiencies and limitations of these studies. Moreover, we established a lncRNA-miRNA-mRNA-pathway-drug network of depression through bioinformatics analysis methods to deepen our understanding of the relationship between lncRNA and depression, promoting the clinical application of epigenetic research.


Assuntos
Depressão , RNA Longo não Codificante/genética , Biologia Computacional , Depressão/genética , Depressão/fisiopatologia , Epigenômica , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Humanos , MicroRNAs/genética , RNA Mensageiro/genética
10.
BMC Complement Med Ther ; 22(1): 24, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35078472

RESUMO

BACKGROUND: Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder diagnosed during adolescence and adulthood. Assessment of the long-term risks of the current drugs for ADHD treatment has been insufficient, and little is known concerning the long-term therapeutic effects of psychostimulants. Commercially available traditional Chinese medicine compound oral preparations [e.g., Dimu Ningshen (DMNS)] have been widely used in the clinical treatment of ADHD, but their influence on the interaction between gut microbes and potential metabolomes remains inconclusive. METHODS: We used a series of behavioral experiments to evaluate the behavioral effects of DMNS on adolescent and adult ADHD rats and used 16S rDNA sequencing of gut microbes and nontarget metabolomics to evaluate the potential pathogenesis of ADHD and explore the biological mechanism of DMNS in ADHD treatment. RESULTS: For the first time, DMNS was shown to reduce the excessive activity of adult and adolescent ADHD rats and improve the attention deficit of adult ADHD rats. DMNS improved the structural composition of the ADHD gut microbiota and reduced the abundance of Ruminococcaceae_NK4A214_group, Ruminococcus_2, and Eubacterium_nodatum_group. Simultaneously, DMNS increased the circulating levels of peripheral monoamine neurotransmitter precursors (e.g., phenylalanine) and reduced the circulating levels of peripheral fatty acid amides (e.g., oleamide). Finally, the changes in the ADHD serum metabolites were strongly correlated with the gut microbiota. CONCLUSION: DMNS has a good effect in treating ADHD, and it may exert this effect by regulating the gut microbiota and affecting metabolites in the peripheral circulation.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Animais , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/uso terapêutico , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Metabolômica , Fitoterapia , Distribuição Aleatória , Ratos , Ratos Endogâmicos SHR , Ratos Sprague-Dawley , Organismos Livres de Patógenos Específicos
11.
Food Funct ; 12(24): 12550-12564, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34812830

RESUMO

The gut microbiome is known to be involved in depression development. Thus, phytochemicals changing gut microbiota may alleviate depression-like behaviors. Coniferyl ferulate (CF) is a long studied natural product and known to alleviate psychiatric disorders. However, its mechanism of action remains unclear. In this experimental study, oral administration of 50 mg kg-1 CF once daily attenuated weight loss and depression-like and anxiety-like behaviors induced by chronic unpredicted mild stress (CUMS) in mice. Four weeks of CF administration significantly ameliorated colonic inflammation, lowered the levels of IL-6, IL-1ß, and TNF-α, and restructured the gut microbiome, and microbial metabolism. Intestinal microbiota can impact the development and function of the brain via the microbiota-gut-brain axis. Therefore, oral administration of CF is a promising nutritional strategy to treat CUMS-induced depression via the regulation of microbiota and microbial metabolism.


Assuntos
Comportamento Animal/efeitos dos fármacos , Ácidos Cumáricos/farmacologia , Depressão/tratamento farmacológico , Depressão/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Administração Oral , Animais , Ácidos Cumáricos/administração & dosagem , Ácidos Cumáricos/metabolismo , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL
12.
Front Pharmacol ; 12: 619103, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33935710

RESUMO

Disturbance of the gut microbiota plays an essential role in mental disorders such as depression and anxiety. Xiaoyaosan, a traditional Chinese medicine formula, has a wide therapeutic spectrum and is used especially in the management of depression and anxiety. In this study, we used an antibiotic-induced microbiome-depleted (AIMD) mouse model to determine the possible relationship between imbalance of the intestinal flora and behavioral abnormalities in rodents. We explored the regulatory effect of Xiaoyaosan on the intestinal flora and attempted to elucidate the potential mechanism of behavioral improvement. We screened NLRP3, ASC, and CASPASE-1 as target genes based on the changes in gut microbiota and explored the effect of Xiaoyaosan on the colonic NLRP3 pathway. After Xiaoyaosan intervention, AIMD mice showed a change in body weight and an improvement in depressive and anxious behaviors. Moreover, the gut flora diversity was significantly improved. Xiaoyaosan increased the abundance of Lachnospiraceae in AIMD mice and decreased that of Bacteroidaceae, the main lipopolysaccharide (LPS)-producing bacteria, resulting in decreased levels of LPS in feces, blood, and colon tissue. Moreover, serum levels of the inflammatory factor, IL-1ß, and the levels of NLRP3, ASC, and CASPASE-1 mRNA and DNA in the colon were significantly reduced. Therefore, Xiaoyaosan may alleviate anxiety and depression by modulating the gut microbiota, correcting excessive LPS release, and inhibiting the immoderate activation of the NLRP3 inflammasome in the colon.

13.
Artigo em Inglês | MEDLINE | ID: mdl-33505499

RESUMO

Depression is the neurological manifestation most commonly associated with gastrointestinal diseases. The release of inflammatory cytokines mediated by TLR4/NLRP3 inflammasome signaling-induced immunoinflammatory activation may represent a common pathogenic process underlying the development of gastrointestinal diseases and depression. Clinical studies have indicated that Xiaoyaosan (XYS) can relieve depressive behavior by improving gastrointestinal symptoms. We previously demonstrated that XYS can reduce colonic inflammation in a rat model of chronic unpredictable mild stress; however, the precise anti-inflammatory mechanisms involved remain unclear. Here, we investigated whether XYS can ameliorate depressive behavior through regulating the TLR4/NLRP3 inflammasome signaling pathway, thereby inhibiting immunoinflammatory activation and reducing colonic proinflammatory cytokine levels. Fifty-two healthy male Sprague-Dawley rats were randomly divided into four groups (control, model, XYS, and fluoxetine). The latter three groups were subjected to 21 days of chronic restraint stress to generate a model of stress-induced depression. XYS and fluoxetine were administered intragastrically. Behavioral changes in the rats were assessed after 21 days. Serum and colon samples were collected, and the relative levels of the inflammation indicators IL-6, IL-1ß, and TNF-α were determined by ELISA. Pathological changes in colon tissue were assessed by hematoxylin and eosin staining. The levels of TLR4, MyD88, NF-κB-p65, TAK1, IRAK1, and TRAF6 were detected by immunohistochemistry, while the gene and protein expression levels of TLR4, MyD88, NF-κB-p65, TAK1, IRAK1, TRAF6, NLRP3, ASC, and caspase-1 were detected by quantitative polymerase chain reaction (qPCR) and Western blotting. The results indicated that XYS could improve the depressive-like behavior and the weight loss of rats with stress-induced depression. Furthermore, depressed rats treated with XYS exhibited decreased expression levels of TLR4, MyD88, NF-κB-p65, TAK1, IRAK1, TRAF6, NLRP3, ASC, and caspase-1 in colonic tissue; reduced colon and serum concentrations of the inflammatory factors IL-6, IL-1ß, and TNF-α; and lowered levels of colonic inflammation.

14.
Biomed Pharmacother ; 137: 111244, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33493967

RESUMO

Depression is the second most common disease burden worldwide that threatens human health; however, mechanisms underlying the development of depression remain unclear. A family of non-coding RNAs, circular RNAs (circRNAs), has been shown to play a critical role in the development of depression by competitively binding to certain microRNAs (miRNA) and regulating the expression of target genes. Behavioral symptoms of depression may be ameliorated by knockdown or overexpression of depression-associated circRNAs. In this review, we summarized important functions of circRNAs and analyzed the most recent findings regarding the expression and biological function of circRNAs in depression. We discussed novel circRNA-based strategies to illuminate potential therapeutic targets that may aid in the development of new treatments for depression.


Assuntos
Afeto , Encéfalo/metabolismo , Depressão/metabolismo , MicroRNAs/metabolismo , RNA Circular/biossíntese , Afeto/efeitos dos fármacos , Animais , Antidepressivos/uso terapêutico , Encéfalo/efeitos dos fármacos , Depressão/tratamento farmacológico , Depressão/genética , Depressão/psicologia , Regulação da Expressão Gênica , Humanos , MicroRNAs/genética , RNA Circular/genética
15.
J Agric Food Chem ; 68(52): 15490-15500, 2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33170671

RESUMO

As one of the empirical models of the chronic central inflammatory response, a spinal cord injury (SCI) deteriorates the neuronal survival and results in irreversible motor and sensory dysfunction below the injury area. Our previous studies have reported that maize bran feruloylated oligosaccharides (FOs) exert significant anti-inflammatory activities both in diabetes and colitis. However, no direct evidence of FOs alleviating central nervous inflammation was stated. This study aimed to investigate the therapeutic effect of FOs on SCI and its potential mechanism. Our results indicated that 4 weeks of FO administration effectively mitigated the inflammatory response via decreasing the number of microglia (labelled with Iba1), result in the expression of IL-1α, IL-2, IL-6, IL-18 and TNF-α downregulating, but the level of IL-10 and BDNF increases in the injured spinal cord. Moreover, FOs enhanced neuronal survival, ameliorated the scar cavities, and improved behaviors, including Basso mouse scale (BMS) scores and the gait of mice after SCI. Together, these results demonstrated that administration of FOs showed superior functional recovery effects in a SCI model. Also, FOs may modulate inflammatory activities by regulating the expression of proinflammatory factors, decreasing the production of inflammatory cells, and promoting functional recovery through the MAPK pathway following SCI.


Assuntos
Oligossacarídeos/administração & dosagem , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/imunologia , Animais , Ácidos Cumáricos/metabolismo , Citocinas/genética , Citocinas/imunologia , Feminino , Humanos , Camundongos , Atividade Motora , Oligossacarídeos/química , Recuperação de Função Fisiológica , Medula Espinal/efeitos dos fármacos , Medula Espinal/imunologia , Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/fisiopatologia
16.
Front Pharmacol ; 11: 284, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32256358

RESUMO

Clinical studies and basic science experiments have widely demonstrated the antidepressant and anxiolytic effects of the herbal formula Xiao-Yao-San (XYS). However, the system mechanism of these effects has not been fully characterized. The present study conducted a comprehensive network pharmacological analysis of XYS and sorted all pharmacologically active components (149) through the TCMSP webserver. Then, all potential molecular targets (449) were predicted, of which there were 99 genes clearly related to depression. To further investigate the mechanism of antidepressant effects of XYS, a compound-depression targets (C-DTs) network was constructed, and Gene Ontology (GO) functional and KEGG pathway enrichment analyses were performed for the 99 targets. Enrichment results revealed that XYS could regulate multiple aspects of depression through these targets, related to metabolism, neuroendocrine function, and neuroimmunity. Prediction and analysis of protein-protein interactions resulted in selection of three hub genes (AKT1, TP53, and VEGFA). In addition, a total of seven ingredients from XYS could act on these hub genes and they were identified through ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS), including paeoniflorin, quercetin, luteolin, acacetin, aloe-emodin, Glyasperin C, kaempferol. Hereafter, we investigated the effects of paeoniflorin and its predicted target, the results suggest that it can reverse the neurotoxicity produced by CORT and could be a neuroprotective effect by promoting the phosphorylation of Akt. Overall, our research revealed the complicated antidepressant mechanism of XYS, and also provided a rational strategy for revealing the complex composition and function of Chinese herbal formula.

17.
Psychiatry Res ; 284: 112691, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31791704

RESUMO

Emerging evidence indicates that disruption of the intestinal flora play an important role in the pathogenesis of depression. As one of the causes of such disturbances, the role of antibiotics in depression risk is gradually being revealed. Herein, we review recent findings showing that the use of both single and multiple antibiotic regimens may be related to depression by changing the gut microbiota and the brain-gut axis. Based on recent discoveries, we also suggest that several brain-gut interactive mechanisms (particularly those involving nerve and glial cells, neurotransmitters, brain neurotrophic factors, inflammatory factors, short-chain fatty acids, circulating metabolites, blood-brain barrier, and oxidative stress) may help understand the effects of antibiotics on intestinal flora and its relationship with depression.


Assuntos
Antibacterianos/efeitos adversos , Encéfalo/efeitos dos fármacos , Depressão/induzido quimicamente , Depressão/psicologia , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Depressão/metabolismo , Microbioma Gastrointestinal/fisiologia , Humanos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia
18.
Biomed Pharmacother ; 112: 108621, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30798141

RESUMO

Depression has become the leading cause of disability worldwide and a growing public health problem in China. In addition, intestinal flora may be associated with depression. This study investigated the effect of the decoction Xiaoyaosan (XYS) against depressive behavior through the regulation of intestinal flora. Fifty-two healthy male Sprague-Dawley rats were randomly divided into four groups (i.e., control, model, XYS, and fluoxetine). The latter three groups were subjected to 21 days of chronic restraint stress to produce the stress depression model. Rats in the XYS and fluoxetine groups received intragastric administration of XYS and fluoxetine, respectively. The behavioral changes of the rats were observed after 21 days. Stool specimens were sequenced using the 16S rDNA high-throughput method to detect the structure and changes in intestinal flora. There was no difference observed in alpha diversity among the groups. At the phylum level, XYS regulated the abundance of Bacteroidetes, Proteobacteria, Firmicutes, Chloroflexi, and Planctomycetes. At the genus level, XYS reduced the abundance of the Prevotellaceae_Ga6A1_group, Prevotellaceae_UCG-001, and Desulfovibrio. On the contrary, it increased the abundance of the Ruminococcaceae family to improve depression-like behavior. The mechanism involved in this process may be related to short-chain fatty acids, lipopolysaccharides, and intestinal inflammation.


Assuntos
Depressão/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Microbioma Gastrointestinal/efeitos dos fármacos , Imobilização , Estresse Psicológico/tratamento farmacológico , Animais , Depressão/microbiologia , Depressão/psicologia , Medicamentos de Ervas Chinesas/farmacologia , Microbioma Gastrointestinal/fisiologia , Imobilização/psicologia , Masculino , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Estresse Psicológico/microbiologia , Estresse Psicológico/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA